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Chapter 16

Using Live-Cell Markers in Maize to Analyze Cell Division 
Orientation and Timing

Carolyn G. Rasmussen

Abstract

Recently developed live-cell markers provide an opportunity to explore the dynamics and localization of 
proteins in maize, an important crop and model for monocot development. A step-by-step method is 
outlined for observing and analyzing the process of division in maize cells. The steps include plant growth 
conditions, sample preparation, time-lapse setup, and calculation of division rates.

Key words Maize, Mitosis, Plant, Live-cell imaging, Microtubules, Cell division, Fluorescent pro-
teins, Confocal, Microscopy

1  Introduction

Live-cell imaging in plant cells is used to study many dynamic pro-
cesses including meristem growth [1–3], development [4], root 
hair growth [5], organelle movement [6], and microtubule and 
actin dynamics [7–11]. Live-cell imaging has also provided insight 
into the mechanisms of cell division in plants [12–16]. The recent 
development of stably transformed maize lines expressing fluores-
cently tagged proteins makes it possible to answer questions 
regarding the dynamics of cell division and other processes [17, 
18]. Maize is an ideal model system for this type of study because 
its relatively large cells divide within the framework of other cells 
while growing in a precisely defined developmental gradient.

Live plant cell imaging performed to understand the process of 
division has primarily used Arabidopsis thaliana, Tradescantia vir-
giniana, and tobacco-cultured cells. Reliable, stable transforma-
tion of A. thaliana [19] has resulted in the fusion of many proteins 
of interest to fluorescent proteins with subsequent examination of 
protein dynamics. A more challenging technique that has also 
yielded dynamic information is microinjection of fluorescently 
labeled proteins and subsequent live-cell imaging in the spiderwort 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



210

T. virginiana [20–22]. Another powerful model used to answer 
questions about cell division is the cultured tobacco cell line bright 
yellow 2 (BY-2). BY-2 cells are easy to transform [23], synchronize 
[24], and observe in vitro on the microscope [25–29]. Physcomitrella 
patens recently emerged as a model for live cell imaging [8, 30, 31] 
which will likely soon be expanded to explore the dynamics of 
division.

Maize has lagged as a model system for live plant cell imaging 
because there were very few available maize lines expressing pro-
teins fused to fluorescent proteins. A notable exception to the lack 
of live cell imaging is the analysis of chromosome movement dur-
ing meiosis, which does not require fluorescent proteins [32]. 
Although bombardment of maize leaf cells has been used to tran-
siently express fluorescent proteins, bombardment has the disad-
vantage of transforming a small number of cells. Moreover, it is a 
damaging process that requires lengthy in vitro culture of isolated 
tissues, which may alter protein dynamics or localization [33]. 
Stable transgenic lines expressing a variety of proteins fused to flu-
orescent proteins circumvent some of the problems with transient 
maize transformation, allowing live-cell imaging of dynamic 
processes.

Maize is an excellent model system for development and cell 
biology in monocots because its leaves develop progressively and 
reproducibly. This reproducible developmental gradient in the 
leaves is referred to as the “base to tip gradient” [34, 35]. Near the 
base of the leaf, cells divide symmetrically. Further from the base, 
some cells divide asymmetrically to differentiate and to establish 
specialized cell types [36]. Finally, towards the tip of the leaf, cells 
expand rapidly. This reproducibility allows direct comparisons to 
be made regarding distinct developmental stages, including a 
recent explosion in large-scale “-omics” analysis [37–43]. The 
recent influx of genomics resources together with the developmen-
tal gradient and live-cell imaging tools will synergize to improve 
our understanding of monocot biology, potentially impacting 
next-generation crop production.

To explore the subcellular localization and dynamics of many 
processes, including cell division, stable transformed maize lines 
expressing live-cell markers have been created [17, 18]. Like many 
other land plant cells, maize cells form typical dividing structures 
in symmetric and asymmetric divisions [44–47]. A preprophase 
band is formed before mitosis and is thought to predict the future 
site of the new cell wall [48]. The preprophase band is a ring of 
microtubules, microfilaments and a large number of other proteins 
that usually forms at the cell cortex around the nucleus [12]. The 
preprophase band disassembles during metaphase while the spindle 
forms [49]. The spindle is an organized antiparallel array of micro-
tubules that moves chromosomes during anaphase. During 
telophase, the plant-specific structure called the phragmoplast 
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forms. The phragmoplast is composed of microfilaments and an 
antiparallel array of microtubules that serve as tracks for the trans-
port of cell-wall components to the newly forming cell plate. The 
cell plate is the nascent cell wall, and eventually it expands out-
wards to the cortex to complete cytokinesis [50, 51].

The method described here provides a protocol for live-cell 
imaging of actively dividing maize cells using YFP-TUBULIN as 
an example. In it, plant growth conditions are outlined, as well as 
sample preparation for microscopy, setting up the time lapse, and 
finally analyzing the results. Recognition of common problems, 
such as sample damage and movement, is discussed and solutions 
presented.

2  Materials

	 1.	Maize seeds that produce plants expressing one or more live-
cell markers such as YFP-TUBULIN [18]. Full list available at 
(http://maize.jcvi.org/cellgenomics/index.php).

	 2.	Soil.
	 3.	Slow release fertilizer.
	 4.	Calcium-magnesium supplementary fertilizer (e.g., Peters 

Excel Cal-Mag Special 15-5-15 water-soluble fertilizer).
	 5.	10 cm square pots in 15 pot flats.
	 6.	4 g/L glufosinate-ammonium in 0.1 % Tween 20.
	 7.	Large 7.5 L (“2 gallon”) pots.
	 8.	Cotton applicators.
	 9.	LED lights or other supplemental lighting. Light intensity 

should be ~230 μE/m2/s at a height of 1 m. A detailed proto-
col for greenhouse growing conditions can be found at agron-
www.agron.iastate.edu/ptf/protocol/Greenhouse%20
Protocol.pdf.

	 1.	Confocal microscope system. Either a spinning disk or a point 
scanning confocal system can be used together with an inverted 
microscope, an EM-CCD camera, and appropriate lasers and 
filters for imaging various fluorescently labeled proteins. 
Various microscopes have benefits and drawbacks (see Note 1).

	 2.	Airstream incubator or thermostat.
	 3.	Mid-range infrared thermometer.
	 4.	Glass cover slips.
	 5.	Rose chamber for holding the sample still during long time 

lapse. Rose chambers or alternatives can be used to stabilize 
the sample within the field of view (see Note 2).

2.1  Greenhouse 
Materials

2.2  Microscopy 
Materials
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	 6.	Vacuum grease loaded into a 10 cm3 needle-less syringe.
	 7.	Water.
	 8.	200 μL pipette and tips.
	 9.	Digital calipers.
	10.	Straight scalpel blade.
	11.	Forceps.
	12.	Software for running the microscope (e.g., Micromanager 1.4 

https://www.micro-manager.org/).

	 1.	ImageJ or FIJI (a regularly updated and modified version of 
ImageJ available at http://fiji.sc/Fiji).

	 2.	Statistical package to import and analyze data.

3  Methods

Temperature and lighting conditions will affect the growth rate 
and cell division rate of maize. Consistent growth conditions, con-
sistent plant age, and tissue type are required for any comparative 
quantitative analyses.

The following steps list a reproducible method of growing 
plants.

	 1.	Plant seeds ~2  cm deep in pre-wetted, pre-fertilized soil in 
10 cm square pots loaded into a 15-pot flat for easy transport.

	 2.	Germinate seedlings in standard long-day greenhouse condi-
tions. The conditions are 16 h light at 25 °C, 8 h dark at 21 °C 
with supplemental lighting provided by LED or high-pressure 
sodium and metal halide lamps.

	 3.	Water plants when the soil is dry, likely three times a week.
	 4.	Fertilize with the Cal-Mag fertilizer once a week.
	 5.	After 1 week of growth, use a permanent marker to mark the 

second or third leaf, and then apply 4 g/L glufosinate-
ammonium in 0.1 % Tween to the marked location using a 
cotton-tipped applicator.

	 6.	Two to three days after herbicide application, score resistant 
and sensitive plants (see Note 3).

	 7.	Transplant resistant plants into 2-gallon pots.
	 8.	Grow for a total of 3–5 weeks after planting. Plants should 

have at least seven visible leaves at this stage of growth. Do not 
use diseased or poorly growing plants. Figure 1a shows accept-
able growth for a 4-week-old plant and describes the parts of 
the plants discussed in this paper (see Note 4).

2.3  Data Analysis 
Materials

3.1  Plant Growth
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	 9.	Figure 1b indicates the part of the plant dissected to observe 
many dividing cells (described in more detail below in sample 
preparation for microscopy and see Note 4).

	 1.	Set the thermostat. Alternatively, turn on the airstream incuba-
tor and point it onto the stage for at least 10 min prior to plac-
ing the sample (Fig. 2a). Determine what setting will provide 
the correct temperature before use. I used 21 °C (see Note 5).

	 2.	Use a mid-range-infrared thermometer to measure the tem-
perature using the laser to guide the thermometer to stage 
right next to the sample (Fig. 2b).

	 3.	Place a clean glass cover slip on the lower half of the Rose 
chamber (Fig. 3a).

	 4.	Prepare a glass cover slip for the sample by applying a thin film 
of vacuum grease in a circle with ~1 cm diameter (see Note 6).

	 5.	Add a ~100 mL drop of water inside the vacuum grease circle 
with a pipette (see Note 7).

3.2  Sample 
Preparation 
for Microscopy

Fig. 1 Representative example of a maize plant and descriptions of the parts of the leaf used in this method. 
(a) A 28-day-old plant grown in standard greenhouse conditions with relevant parts and descriptors of the 
plant indicated. (b) Schematic of a plant leaf, with more descriptors, as well as a micrograph of a young maize 
leaf expressing YFP-TUBULIN. Bar is 50 μm
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	 6.	After 3–5 weeks of growth, harvest plants for microscopy. 
Refer to Subheading 3.1 for growth conditions and Subheading 
3.1, step 8 for acceptable plants to harvest.

	 7.	Cut off the above-ground portion of the maize plant, at the 
base of the sheath, leaving behind the roots (Fig. 1b).

	 8.	Sequentially peel away the outer leaves until the sheath height 
is less than 3 mm. Sheath height can be measured with digital 
calipers or a ruler.

	 9.	Excise a ~0.2–1.0  cm2 leaf piece just above the ligule and 
between the midrib and the margin (Fig. 1b) using a straight 
scalpel blade.

Fig. 2 Temperature control. (a) Photograph of the inverted stage with the airstream pointing toward the sample. 
The Rose chamber is assembled on the microscope. (b) The infrared thermometer is shown with the laser 
readout pointed toward the sample on the microscope

Fig. 3 The Rose chamber holds the sample steady during time-lapse imaging. This figure shows the steps 
needed to assemble it. (a) The bottom part of the rose chamber is shown with the cover slip, vacuum grease, 
water and sample mounted. (b) The second cover slip is carefully mounted on top of the sample, spreading the 
water evenly. (c) The top of the Rose chamber is screwed into place, and the sample is ready to be loaded onto 
the holder and the stage
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	10.	Carefully peel the excised portion from the rest of the leaf, 
holding the sample by the edge with forceps. Avoid touching 
the tissue directly.

	11.	Mount the adaxial side down in the water droplet towards the 
objective when the rose chamber is fully assembled (see Figs. 1a 
and 4 and Note 4).

	12.	If there are air bubbles (see Fig. 5d), carefully remove your 
sample from the water and set it down again (see Note 8).

	13.	Gently place another cover slip on top of the sample and bot-
tom cover slip (Fig. 3b).

	14.	Adjust the sample so that it is in the middle of the Rose cham-
ber (see Note 9).

	15.	Place the top half of the Rose chamber, including the silicone 
sandwich, onto the top cover slip, and carefully screw it down 
(Fig. 3c).

	16.	Load the rose chamber into the holder and mount it on the 
microscope stage after adding the correct immersion liquid for 
the objective (see Notes 10 and 11).

	17.	Figure 2a shows a Rose chamber loaded onto the stage and 
Fig. 4 shows the schematics of the Rose chamber and its final 
orientation relative to the objective.

Fig. 4 Schematic of the Rose chamber with parts and measurements labeled. All 
pieces but the metal holder will eventually be screwed together to gently sand-
wich the sample and stabilize it during time-lapse imaging. The cover slip at the 
bottom of the Rose chamber will come into contact with the immersion liquid and 
the objective
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	 1.	Start the computer, microscope, camera, focus and filter con-
troller, laser launch, etc. Consult a microscope manual or 
knowledgeable person for details on its operation.

	 2.	Find the epidermal cell layer using bright field. Avoid taking 
images near the cut sites.

	 3.	Switch to the camera view to start observing the fluorescent 
proteins in the cells. If cells are damaged or there is an air 
bubble, prepare a new sample. Examples of damaged cells are 
shown in Fig. 5 (see Note 8).

	 4.	Adjust the exposure time, EM gain, and laser attenuation (if 
necessary) so that the illuminated sample has high dynamic 
range (see Note 12).

	 5.	If the goal of the time lapse is to capture the entire process of 
division, prioritize capturing cells in late prophase at the start of 
the time lapse. Figure 6, time 0, shows an example of a cell in late 
prophase with a disassembling preprophase band. More exam-
ples of cells in late prophase are shown in Fig. 7 (see Note 13).

	 6.	Use the multi-acquisition tool to set up your time lapse. Specify 
Z stack positions, exposure time, EM gain, and amount of 

3.3  Microscopy

Fig. 5 Examples of cells expressing YFP-TUBULIN that are damaged and an air bubble. (a) Aberrant division 
structure indicated by an arrow. (b) Abnormal microtubule structure that looks like a dot indicated by an arrow. 
(c) Example of cells with a lot of small vacuoles. (d) Air bubble indicated by an arrow. Bar is 20 μm
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time between image collection. For observing mitosis in maize, 
5-min time lapse is a good compromise between photo-
bleaching and loss of temporal resolution (see Note 14).

	 7.	Choose the “save as function” to save time-lapse images as 
they are produced into a single folder so that images are not 
lost in case of power outages (see Note 15).

	 8.	Start the time lapse.
	 9.	Adjust for sample movement, especially in the first 20  min. 

The most frequent trouble is slow drift in one direction. If 
there is a lot of drift, the sample is incorrectly positioned on 
the cover slip and a new sample should be loaded.

	10.	Check the time lapse for sample movement every hour. 
Compare the start of the time lapse with the new positions, 
and readjust your sample if the x, y, or z planes shift during the 
time-lapse.

Fig. 6 Time lapse of a cell progressing from late prophase to the end of telophase and examples of cells in late 
prophase. Microtubules are labeled with YFP-TUBULIN. Time is indicated in the bottom left-hand side in minutes. 
(a) Late prophase. Note that the preprophase band has almost fully disassembled. (b) The bipolar spindle is formed 
in metaphase. (c) The anaphase spindle elongates to separate the chromosomes. This is the shortest stage in the 
cell cycle and generally takes 10–15 min. (d) A phragmoplast, an antiparallel set of microtubule arrays, forms in 
telophase. The cell wall materials are transported along the microtubule tracks towards the phragmoplast midline. 
(e) The phragmoplast expands outwards towards the cortex to complete cytokinesis. Bar is 10 μm

Fig. 7 Three examples of cells transitioning between prophase and metaphase. Note the prominent microtu-
bule accumulations around the nuclear envelope
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	11.	Stop the time lapse after the cells are finished dividing or 5 h, 
whichever occurs first. Empirically, 5 h was the maximum 
amount of time that division progressed with this sample type 
at this temperature.

	 1.	Open stacks in the image analysis program Fiji or ImageJ.
	 2.	Make maximum projections of the Z stacks: Process: 

Batch:Macro. Then specify input (the folder with the Z stacks) 
and output files (a new folder to put the max projections) with 
output format [Tiff]. Use this macro: run (“Z Project…”, 
“start = 1 stop = 10 projection = [Max intensity]”) (see Note 16).

	 3.	Open the maximum projections as an image sequence 
(File:Import:Image sequence) and scroll through the file.

	 4.	If the sample drifts a lot during the time-lapse, perform a cor-
rection by loading Plugin:Registration:StackReg or 
Plugin:Registration:Register Virtual Stack Slices and choose 
“Translation” (see Note 17).

	 5.	Use the timestamps on original Z stacks to calculate the timing 
of division stages. Figure 5 illustrates the microtubule struc-
tures to look for at various stages of the cell cycle, and illus-
trates one potential way of indicating time.

	 6.	Measure the amount of time needed to progress from one 
stage to another. These transitions are very clear when time-
lapse images are viewed as a movie. The time can be analyzed 
in by calculating (the time between frames) × (number of 
frames cells are in a particular stage) = total time cells are in that 
state. An alternative method, if the stacks are not generated in 
5-min intervals, is to compare the time-stamps on the images 
as they were originally saved.

	 7.	Scroll through the image sequence focused on one mitotic 
structure. The spindle microtubules will start accumulating 
before the preprophase band disassembles. Preprophase band 
disassembly is observed as a loss of fluorescence at the cortex.

	 8.	Next, the spindle, a football-shaped structure, coalesces per-
pendicular to the final division site and then expands during 
anaphase.

	 9.	A sharp transition occurs from the orientation of the spindle to 
the orientation of the phragmoplast. The spindle is generally 
perpendicular to the final division site, while the phragmoplast 
is generally aligned with the final division site. This visually 
striking morphological change is usually obvious from one 
frame to the next.

	10.	The phragmoplast expands towards the cortex, sometimes 
contacting one side before the other [52]. Viewed from the 
side, it looks like two microtubule-containing disks with the 

3.4  Data Analysis
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midline containing very few microtubules. As the phragmo-
plast expands, the interior microtubules may disassemble. 
Viewed from the top the phragmoplast looks like an expanding 
torus.

	11.	Finally, the phragmoplast reaches the cortex and starts to disas-
semble. Once it is completely disassembled, stop the time lapse 
and measure the complete time of all the steps.

	12.	Import the time values into Microsoft Excel or another spread-
sheet program. Usually, the long and unpredictable amount of 
time that cells spend in preprophase/prophase means that 
gathering this type of data is more difficult. If cells do not 
progress, they may be damaged (Fig. 5 and see Note 8).

	13.	Other measurements can also be made such as the rate of 
phragmoplast expansion or the rotation and movement of the 
spindle. These are not discussed further in this method.

4  Notes

	 1.	Microscope selection
A confocal microscope must be used to avoid out of plane 

fluorescence with intact plant tissues. Either a laser scanning 
microscope or a spinning disk microscope can be used. The 
benefits of using a spinning disk microscope are speed and 
reduced photo-damage to the specimen. For fluorescent pro-
teins that photo-bleach rapidly, a spinning disk microscope 
with a sensitive camera is essential. If the fluorescently tagged 
protein is abundant and does not photo-bleach easily, such as 
YFP-TUBULIN, it is possible to use a point-scanning micro-
scope for time-lapse imaging. If necessary, the images can also 
be binned to reduce both photo-damage and the time required 
to gather each individual image.

	 2.	The Rose chamber
The Rose chamber as it is used here prevents movement of 

the sample by applying enough pressure to flatten a curved 
sample, but not too much to damage the cells. There is no 
commercially available option for purchase of a Rose chamber, 
but it is straightforward for a machine shop to make one. It 
consists of a metal holder, two pieces of metal and one piece of 
silicone or rubber with a width of 5 cm × 3.5 cm with a hole 
cut in the middle of both 1.8 cm diameter, four aligned screw 
holes, illustrated with dimensions shown in Fig. 4. An inex-
pensive alternative to the Rose Chamber is a glass slide sealed 
with VALAP (This is a 1:1:1 mixture by weight of paraffin, 
lanolin and Vaseline, doi:10.1101/pdb.rec12380Cold Spring 
Harb Protoc 2010.). VALAP, a solid at room temperature, is 
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gently heated on a hot plate to liquefy. VALAP provides a 
strong and biologically inert attachment between the slide and 
the cover slip. Do not use Vaseline or vacuum grease unless 
the sample is thin because the cover slip may slip during 
imaging.

	 3.	PCR to distinguish segregating transgenes
When multiple transgenes are segregating, it is helpful to 

confirm the genotype using a PCR based method, particularly 
when the plants express fluorescent proteins only in dividing 
tissue. A general method for maize DNA extraction and PCR 
can be found at http://rasmussenlab.weebly.com/protocols.
html.

	 4.	Age and type ofmaizematerial suitable for imaging cell division 
by time lapse.

Overall, it is important to observe similar samples from one 
experiment to the next so that the data can be combined in the 
quantitative analyses. This is also why temperature control (see 
Note 5) and growth conditions are vital to the success of the 
experiment. Several parts of the plant are actively dividing 
including the base of the leaf, the meristem, the young sheath 
material and the root tips. Maize primary roots are thick, and 
cutting them appropriately for stable time-lapse imaging can 
be difficult. Young blade or sheath tissue is preferred because 
it is flat, has mostly undeveloped chloroplasts (and therefore 
little to no autofluorescence), and has a high proportion of 
dividing cells. If asymmetric divisions are preferred, older leaf 
tissue should be used. Either the adaxial or abaxial side of the 
leaf can be used. If juvenile leaves are preferred, either because 
the fluorescent protein is better expressed or the developmen-
tal stage is more ideal for the experiment, plants ~2 weeks old 
can be harvested.

	 5.	Temperature control
The temperature must be the same between experiments if 

comparisons are going to be made between samples. The main 
reason to keep the temperature then same is that microtubule 
dynamics (and other protein dynamics) are different at differ-
ent temperatures [53]. Other methods that can be used to 
control temperature are a thermostat-regulated room or a 
heated chamber for microscopy.

	 6.	Vacuum grease
Vacuum grease is recommended to form the small well 

between the two cover slips because it has the correct viscosity 
and is chemically inert. It is important that a thin, consistent 
layer is applied for optimal time-lapse microscopy. If the layer 
is too thin or if it is spread unevenly, the sample will slip during 
time lapse (see Note 8 on sample slipping). Other materials 
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that can be used are Vaseline and VALAP. Vaseline will work in 
a pinch, but it may not adequately protect the sample during 
mounting because it is much softer than vacuum grease. 
VALAP is tricky to apply in a thin layer because it solidifies 
very quickly.

	 7.	Water
Use water to mount maize samples. Other materials, such 

as mineral oil or phosphate buffered saline, will damage the 
cells and prevent timely progression of mitosis. Other materi-
als, such as perfluorocarbons [54], may be better for imaging, 
but I have not had an opportunity to use them.

	 8.	Avoid sample damage and air bubbles
Damage and air bubbles both cause significant trouble for 

time-lapse imaging. Avoid smashing, squashing, or otherwise 
disturbing the sample. If the sample is damaged, take a new 
slice from the plant, which should be wrapped in moist paper 
towels to preserve it for a few hours if necessary. The most 
obvious signs that cells are damaged are a lack of organized 
cortical interphase microtubule array in nondividing cells, cells 
with many small vacuoles, cells that fail to progress in the cell 
cycle or cells with abnormal mitotic arrays (see Fig. 5). Air 
bubbles will cause your sample to slip out of focus and may 
alter the rate of division. If the sample has an air bubble, care-
fully take the sample out, and set up a fresh cover slip, vacuum 
grease, and water to place the sample.

	 9.	Sample placement
Placing the sample in the middle of the Rose chamber is 

very important because if it is not correctly centered, the 
objective may run into the side of the chamber. This has the 
potential to scratch the objective, disturb correct Z stack imag-
ing, and make the sample slip.

	10.	Objective selection
For semi-high-throughput imaging, the lowest objective 

that still allows unambiguous identification of mitotic struc-
tures should be used. I used a 20× objective for this purpose. 
For producing a time-lapse figure, a higher objective (such as 
40 or 60×) should be used to more clearly illustrate the mitotic 
figures. An alternative, should it be feasible with your micro-
scope setup, is to use x,y motorization to move between mul-
tiple different samples during time-lapse.

	11.	Immersion liquid
The correct immersion liquid must be used on your objec-

tive, but what type of objective is best for time-lapse imaging? 
Some objectives do not require any immersion liquid but use 
air instead. Unfortunately, the refractive index of air is very dif-
ferent than plant cells. The benefit of using an oil objective is 
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that the immersion oil will not evaporate during imaging. 
However, it reduces the quality of imaging because the refrac-
tive index of immersion oil is not very similar to plant cells. 
Water has a closer refractive index to your sample, and will 
produce a more beautiful micrograph. However, water objec-
tives are not ideal for long time lapse because the water can 
evaporate within 1 h of time-lapse imaging. Glycerin or silicone 
oil may provide the best compromise between a good refractive 
index and slower evaporation but I do not have experience 
with either of these materials. Perfluorocarbon immersion liq-
uids can also be used.

	12.	Laser power
Keep laser power low to minimize photo-damage to the 

cells. Instead of increasing laser power, consider increasing 
EM gain or exposure times. Empirical testing may be done to 
confirm that the settings do not cause photo-damage before 
long time lapses are performed. Use a sample to test for photo-
damage by collecting the total number of images the time 
lapse will acquire during one session. This can be done in 
micromanager using the “burst” function. After imaging, 
measure fluorescence loss and observe whether damage occurs.

	13.	Cells in lateprophase
Since the amount of time a cell spends in preprophase can 

be quite long (>3 h), it is best to focus the sample such that a 
cell in late prophase is in the middle of the field of view. These 
cells are characterized by an obvious accumulation of microtu-
bules at both poles of the imminent spindle, but still have a 
preprophase band (Fig. 7).

	14.	Selecting appropriate image collection intervals
One goal of time-lapse imaging is good temporal resolution 

but another more important goal is prevention of photo-
damage. Short time intervals (e.g., 2 min) can increase the risk 
of photo-damage to the cells, which impedes division. Long 
time intervals (e.g., 15 min) can result in data loss. For exam-
ple, anaphase, the shortest stage of the cell cycle (~10 min) 
will not be observed within 15-min intervals. A decent time 
compromise is 5-min intervals for dividing cells, but this will 
need to be optimized depending on the type of sample and 
temperature (see Note 5). An alternative way to minimize 
photo-damage is to capture a single image or a short Z stack, 
such as 4–1 μm intervals at each time point instead of a full Z 
stack (covering the top through the bottom of the cells usually 
at 1 or 1.5 μm stacks for 10–20 separate Z stacks).

	15.	Automatic saves
The “save as” function saves images as they are produced, 

showing an accurate timestamp on each Z stack. The save as 
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function also protects against loss of already acquired images 
during power failures or other malfunctions that can occur 
during time-lapse imaging.

	16.	Set the Z stack so that the maximum projection will provide a 
clear image

Maximum projection, a post-acquisition method of visual-
izing the Z stacks compressed into one image, can be used to 
more clearly distinguish structure types and changes in mitotic 
structures. Sometimes the maximum projection to produce 
the clearest image will not be the entire Z stack, particularly if 
the sample is thick.

	17.	Automatic corrections inImageJor FIJI
Two plug-in programs in ImageJ/FIJI can be used to adjust 

for sample movement during imaging: Stack Reg and 
Registration:Register Virtual Stack Slices. Both can automati-
cally correct the slow drift caused by plant growth or movement 
in one direction. However, if large manual adjustments are per-
formed during time-lapse imaging, these programs may not be 
able to correct the image. Manually correct large shifts in 
ImageJ, and then run StackReg or Register Virtual Stack Slices.
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